

Tevatron Physics

Fermilab Users Meeting

David Toback

Texas A&M University

June 2014

Overview

- The CDF and DZero collaborations are still doing exciting physics and publishing at a strong rate
- Focusing on legacy results that are competitive and complementary to the LHC
- In a phrase, our motto is "get the papers out!"

Publication History

CDF and DZero: ~30 paper each in 2013
Excellent results in all physics groups
Tevatron Legacy: Over 1,000 papers
published and 1,000 PhD's granted

June 2014

Selected Results

- Higgs
 - Final Higgs Combination
 - Higgs Couplings
- Exotics/New Phenomena
 - Search for Heavy Vector Bosons
- QCD
 - Exclusive production
 - Double parton Interactions
 - W/Z + Jets
 - Vector Boson +HF
- Heavy Flavor
 - CP Violation B[±] decays
 - Excited B-mesons
 - b-Baryon properties
 - Di-muon charge asymmetry

- EWK
 - A_{FB} : $Sin^2\theta_{eff}$ and M_W
 - WW and ZZ Results
 - W Mass
- Top
 - Top Pair-Production Cross section
 - Top Mass
 - Single Top s+t
 - Single Top in s-only
 - A_{FR} in tt
 - A_{FR} in bb

- The Higgs groups at both CDF and DZero have completed their search work
- Powerful results in bb are complementary to the final states from the LHC
- Observed significance is 3.0σ at a Higgs mass of 125 GeV
- Tevatron combination published
 - PRD 88, 052014 (2013)

- The world-wide emphasis has shifted to property measurements
- Combination of CDF and DZero results on Higgs Spin-parity is in progress
 - DZero results are public (Conf Notes 6387 and 6404)
 - CDF results are nearing completion
- All results are currently consistent with the SM

Search for Heavy Vector Bosons Exotics/New Phenomena

- While the Tevatron isn't competitive for the high mass searches any more, there are still a number of places where it has advantages
 - PPbar vs. PP
 - Low number of interactions per crossing
- New limits on W'→tb and Z'→tt are the world's best at intermediate masses
 - PRL 110, 121802 (2013)
 - CDF Public note 11079
- A few more results to come in the next year
 - Delayed photons
 - Monopoles
 - Others

QCD: Exclusive Production

- Measurements of Exclusive Production are important in their own right as well as for input in our Monte Carlos (Pythia, Herwig++ etc.)
- Central Exclusive Hadron Pair Production
 - CDF Public Note 10841
- Many other exclusive results
 - High mass di-jet production
 - Exclusive di-jet production,
 - exclusive di-photon
 - exclusive χ_c production
- Measurements at multiple Tevatron energies
 - 300, 900 and 1960 GeV
 - CDF Pub Note 10841 and 10874

- Ability to separate single and double parton interactions
- Measurements in both
 γ + 3 jets and γ + b/c +
 2 jets events
 - -DZero: PRD 89, 072006 (2014)
- In agreement with the SM

W/Z+Jets

Z+jets & W+jets Cross Section Measurements

CDF: Public Note 10216

DZero: PRD 88, 092001 (2013)

QCD@NLO works reasonably well and is very useful for model builders

Fermilad Users Meeting – Tevatron P

Vector Boson + HF

- Using the low pileup environment to pushing down to low rate and/or soft production
- V+Charm jet
 - **DZero: PRL 112, 042001 (2014)**
- V+D*
 - New method allows for lower P_T Charm
 - CDF Public Note 11087
- W/Z+Upsilon
 - No observation, new limits
 - CDF Public Note 11099

	$\Upsilon + W$	$\Upsilon + Z$
expected limit (pb)	5.5	13
observed limit (pb)	5.5	20

- Analyzed decay multiple modes of B[±] for CP violation
 - $-\mathbf{B}^{\pm} \rightarrow \mathbf{J}/\psi \mathbf{K}^{\pm} \rightarrow \mu^{+}\mu^{-}\mathbf{K}^{\pm}$
 - $-\mathbf{B}^{\pm} \rightarrow \mathbf{J}/\psi \pi^{\pm} \rightarrow \mu^{+}\mu^{-}\pi^{\pm}$
- World's most precise measurement

$$-A^{J/\psi K} = (0.59 \pm 0.36)\%$$

$$-A^{J/\psi\pi} = (-4.2 \pm 4.8)\%$$

- Consistent with SM expectations
 - DZero: PRL 110, 241801(2013)

Excited B-mesons

- First evidence of resonances (4.4σ)
 consistent with two states of orbitally excited (L=1)
 B⁺-mesons ------
 - In both $B^0\pi^+$ and a $B^+\pi$ samples
- Measured masses and widths of all states, as well as the relative production rates
 - CDF: arXiv:1309.5961

Quantity	Value	Stat. uncert.	Syst. uncert.
MeV/c^2	${\sf MeV/c^2}$	${\sf MeV/c^2}$	${\sf MeV/c^2}$
$Q(B(5970)^0)$	558	5	12
$Q(B(5970)^+)$	541	5	3
$m(B(5970)^0)$	5978	5	12
$m(B(5970)^+)$	5961	5	3
$\Gamma(B(5970)^0)$	70	18	31
$\Gamma(B(5970)^+)$	60	20	40

Masses are calculated assuming the state decays to $B\pi$.

- Best measurements of the masses and lifetimes of Ξ_c and b-baryons
- First observations of $\Omega_b^- \to \Omega_c^0 \pi^- \text{ and }$ $\Xi_b^0 \to \Xi_c^+ \pi^-$
 - -CDF: PRD 89 072014 (2014)
 - Not yet seen at LHC

Baryon	Mass (MeV/c2)
Ξ_c^0	$2470.85 \pm 0.24 \pm 0.55$
Ξ_{c}^{0} Ξ_{c}^{+} Λ_{b} Ξ_{b}^{-} Ξ_{b}^{0} Ω_{b}^{-}	$2468.00 \pm 0.18 \pm 0.51$
Λ_b	$5620.15 \pm 0.31 \pm 0.47$
Ξ_b^-	$5793.4 \pm 1.8 \pm 0.7$
Ξ_b^0	$5788.7 \pm 4.3 \pm 1.4$
Ω_{b}^{-}	$6047.5 \pm 3.8 \pm 0.6$
$M(\Xi_{c}^{0}) - M(\Xi_{c}^{+})$	$2.85 \pm 0.30 \pm 0.04$
$M(\Xi_b^-) - M(\Xi_b^0)$	$4.7 \pm 4.7 \pm 0.7$

- Current result deviates from the SM prediction by 3.0σ
 - DZero: PRD 89, 012002 (2014)
- Result is consistent with independent DZero measurements
 - Semi-leptonic asymmetry in B^0 (a^d_{sl}): PRD 86, 072009 (2012)
 - Semi-leptonic asymmetry in B_s (a_{sl}^s): PRL 110, 011801 (2013)
- This effect is one of a few remaining puzzles from the Tevatron program which might indicate physics beyond standard model

Precision EWK: A_{FB} from leptons $\sin^2\theta_{eff}$ and W-mass

 A_{FB} from leptons provides a powerful way to measure $\sin^2 \theta_{eff}$

· CDF:

- Interpret the results as an indirect W mass measurement → quite competitive
- New μμ measurement in PRD 89, 072005 (2014)
- Result for ee in progress

DZero:

- Single most precise $\sin^2\theta_{eff}$ measurement is in *ee* final state
- Public Note 6426

W-boson mass (GeV/c²)

WW and ZZ Results

- WW cross section
 - New full data set results as a function of N_{jet} and Jet E_T
 - CDF Public note 11098
 - Dzero: PRD 88, 112005 (2012)
- ZZ Cross Section
 - $-\sigma_{zz}=1.04^{+0.32}_{-0.25} \text{ pb}$
 - CDF: PRD 89, 112001 (2014)
 - DZero: PRD 88, 0230080 (2013)
- All in agreement with the SM

- Tevatron Combination
 - PRD 88, 052018 (2013)
 - CDF: PRD 89, 072003 (2014)
 - DZero: PRD 89, 012005 (2014)
 - $M_W = (80387 \pm 16) \text{ MeV/c}^2$
 - 0.02% precision!
- Further reduction of uncertainties are difficult and time consuming
 - Full-data results from both
 CDF and DZero in
 progress

Top Pair-Production Cross Section

- Combined CDF/DZero results from ~8.8 fb⁻¹ published
 - PRD 89, 072001 (2014)
- Result is 7.60±0.41 pb
- CDF version in lep+jets with the full dataset nearing release

Top Mass

- CDF Combination now complete in all channels
 - Public Note 11080
- Tevatron Combination
 - arXiv:1305.3939
- Strong impact on World combination
 - arXiv:1403.4427
- New DZero results in lepton+jets
 - Very small uncertainties: $M_{top} = 174.98 \pm 0.76$
 - arXiv:1405.1756

- CDF Results in Met+Jets and Lep+Jets
 - Public Notes 10793 and 10926
 - Combined results coming soon
- DZero Result
 - Phys. Lett. B 726, 656(2013)
- Tevatron Combination is well underway, results expected soon

- Single top production in the Sonly Channel has now been observed
 - Combination complete
 - PRL 112, 231802 (2014)
- Observed significance 6.3σ

June 2014

Fermilab Users Meeting – Tevatron Physics

Forward-Backward Asymmetry in ttbar

- Hot topic for a number of years
- CDF Lep+Jets results shows anomalies
 - In total reconstructed asymmetry
 - CDF: PRD 87, 092002(2013)
 - Most pronounced as a function of mass
 - In $d\sigma/d\cos\theta_t$ in l+jets
 - CDF: PRD 88, 072003(2013)
 - In lepton asymmetry
 - CDF: PRL 111, 182002(2013) _
- Full suite of CDF and DZero results since in then
 - Leptonic: l+jets & dileptons
 - Full Reconstruction: Lep+Jets only
- Recent results from CDF and DZero are more consistent with SM
 - DZero leptonic Asy: PRD 88, 112002 (2013)
 - DZero Reconstructed: arXiv:1403.1294
 - CDF leptonic Asym: arXiv:1404.3698
- Not sure what the final conclusion is: working to finish results, reconcile them all and combine

Asymmetry, %

- 1evatron Enysics

- The A_{FB} in tt suggests that looking in the lower mass bb state is useful at large bb invariant masses
- New results consistent with SM
 - CDF Public note 11092
- DZero and CDF low mass results in the works

CDF

- Expect ~30 papers in 2014
- Expect ~15 in 2015

DZero:

- Expect ~25 papers in 2014
- Expect ~15 papers in 2015

CDF			
Topic	2014	2015	
BSM	3	3	
Higgs	1	0	
Тор	11	2	
SM (EWK+QCD)	8	6	
Heavy Flavor	6	4	
Combinations	4	3	
Total	34	18	
	r	CHIHAD OSCIS IVI	

DZero				
Topic	By summer 2014	Beyond summer 2014		
EWK	4	5		
Higgs	1	1		
Тор	3	5		
QCD	3	5		
Heavy Flavor	2	3		
Combinations	3	4		
NIM	-	1		
Total	16	24		

Conclusions

- The CDF and DZero collaborations are still doing exciting physics and publishing at a strong rate
- The Tevatron has now published over 1,000 papers and graduated over 1,000 PhD students
- The last year(s) have had many successes by focusing on legacy results that are competitive and complementary to the LHC
 - Single Top, W Mass, Top Mass, A_{FB} in tt, Higgs(bb)
- Modest support from the laboratory and funding agencies around the world is well leveraged and will assure many more important results to come based on the Tevatron data
- In the next year or so we expect many exciting results including the final Tevatron word on the Higgs Spin-parity in VHiggs(bb) Top mass, A_{FB} in tt and bb, W charge asymmetry and a W Mass measurement in the 10-15 MeV range